Brownian motion and Stochastic Calculus Dylan Possamaï

Assignment 11—solutions

Exercise 1

Let B be an (\mathbb{F}, \mathbb{P}) -Brownian motion and M an (\mathbb{F}, \mathbb{P}) -martingale such that $dM_t = \sigma M_t dB_t$ with $\sigma > 0$ given and $M_0 = 1$.

- 1) Give the Itô decomposition of $Y_t := (M_t)^{-1}, t \ge 0$.
- 2) Let \mathbb{Q} be the probability measure defined by $d\mathbb{Q}/d\mathbb{P} := M$. What can you say about the law of Y under \mathbb{Q} ?
- 3) Let $K \ge 0$ be given. Show that

$$\mathbb{E}^{\mathbb{P}}\left[(M_T - K)^+\right] = K\mathbb{E}^{\mathbb{P}}\left[\left(\frac{1}{K} - M_T\right)^+\right].$$

1) It suffices to apply Itô's formula, noticing also that $M_t = \mathcal{E}(\sigma B)_t$

$$\mathrm{d}Y_t = -\frac{1}{M_t^2} \mathrm{d}M_t + \frac{1}{M_t^3} \sigma^2 M_t^2 \mathrm{d}t = -\sigma Y_t \mathrm{d}B_t + \sigma^2 Y_t \mathrm{d}t.$$

2) First, Novikov's condition gives us immediately that M is a martingale, and we can use it as a change of measure, say at least on \mathcal{F}_T . Then by Girsanov's theorem (and the symmetry of Brownian motion)

$$B_t^{\mathbb{Q}} := -B_t + \sigma t,$$

is an (\mathbb{F}, \mathbb{Q}) -Brownian motion, so that

$$\mathrm{d}Y_t = \sigma Y_t \mathrm{d}B_t^{\mathbb{Q}},$$

and thus the law of Y under \mathbb{Q} is the same as the law of M under \mathbb{P} .

3) We have

$$\mathbb{E}^{\mathbb{P}}[(M_T - K)^+] = K\mathbb{E}^{\mathbb{P}}[M_T(K^{-1} - Y_T)^+] = K\mathbb{E}^{\mathbb{Q}}[(K^{-1} - Y_T)^+] = K\mathbb{E}^{\mathbb{P}}[(K^{-1} - M_T)^+].$$

Exercise 2

The goal of this question is to prove Novikov's condition which gives a sufficient requirement for an exponential (local) martingale to be a uniformly integrable martingale. Let $\mathbb{F} := (\mathcal{F}_t)_{t\geq 0}$ be a filtration satisfying the usual conditions. When N is a continuous (\mathbb{F}, \mathbb{P}) -local martingale we will write $\mathcal{E}(N) := \exp(N - [N]/2)$. Suppose that M is a given continuous (\mathbb{F}, \mathbb{P}) -local martingale with $M_0 = 0$, \mathbb{P} -a.s.

- 1) Prove that $\mathcal{E}(M)$ is an (\mathbb{F}, \mathbb{P}) -super-martingale. Moreover, show that if $\mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}] = 1$, then $\mathcal{E}(M)$ is a \mathbb{P} -uniformly integrable (\mathbb{F}, \mathbb{P}) -martingale.
- 2) Consider $p \ge 1$, $\varepsilon \in (0, 1)$, $\eta \in (0, 1)$ and $\rho \in \mathbb{R}$. Prove that when M is bounded by a deterministic constant, then for any $t \ge 0$

$$\mathbb{E}^{\mathbb{P}}\left[\sup_{s\in[0,\infty)}\mathcal{E}(\eta M)_{s}^{p}\right] \leq \left(\frac{p}{p-1}\right)^{p}\sup_{s\in[0,\infty)}\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(\eta M)_{s}^{p}\right], \text{ for } p>1,$$
$$\mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{\eta M_{t}-[\eta M]_{t}/2}\right)^{p}\right] \leq \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{(\rho-p)[\eta M]_{t}/2}\right)^{1/\varepsilon}\right]^{\varepsilon}, \text{ for } \rho=p^{2}/(1-\varepsilon).$$

3) Use 2) and a localisation argument to establish the following: If $\mathbb{E}^{\mathbb{P}}[e^{[M]_{\infty}/2}] < +\infty$ (called Novikov's condition) then for all $\eta \in (0, 1)$, there exists p > 1 such that

$$\mathbb{E}^{\mathbb{P}}\left[\sup_{t\in[0,\infty)}\mathcal{E}(\eta M)^{p}\right]<\infty, \text{ and hence } \mathbb{E}^{\mathbb{P}}\left[\sup_{t\in[0,\infty)}\mathcal{E}(\eta M)\right]<+\infty.$$

Deduce that then $\mathcal{E}(\eta M)$ is a \mathbb{P} -uniformly integrable (\mathbb{F}, \mathbb{P}) -martingale, so that $\mathbb{E}^{\mathbb{P}}[\mathcal{E}(\eta M)_t] = 1$, for all $t \in [0, \infty]$.

4) Using 3) and part of the argument given in 2), show that (again assuming Novikov's condition) for $\varepsilon \in (0,1)$

$$1 = \mathbb{E}^{\mathbb{P}}[\mathcal{E}(\eta M)_{\infty}] \le \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[e^{(1-\varepsilon)[M]_{\infty}/2}\right]^{\varepsilon} \le \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[e^{[M]_{\infty}/2}\right]^{\varepsilon}, \text{ where } \eta := 1-\varepsilon.$$

5) Combine the above results to deduce that under Novikov's condition, $\mathcal{E}(M)$ is a \mathbb{P} -uniformly integrable (\mathbb{F}, \mathbb{P}) martingale.

1) First of all, we know that $\mathcal{E}(M)$ is a local martingale. Let us define stopping times $\tau_n = \inf\{t \ge 0 : |M_t| \ge n\}$ for $n \in \mathbb{N}$. Then $\mathcal{E}(M)^{\tau_n}$ are local martingales that are each bounded by a deterministic constant, so they are all martingales. By Fatou's lemma, we get that for $t \ge 0$,

$$0 \leq \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_t] = \mathbb{E}^{\mathbb{P}}\left[\liminf_{n \to \infty} \mathcal{E}(M)_t^{\tau_n}\right] \leq \liminf_{n \to \infty} \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_t^{\tau_n}] = 1.$$

This yields integrability. Clearly $\mathcal{E}(M)$ is adapted. Consider now $0 \le s \le t$. Then

$$\begin{split} \mathcal{E}(M)_s &= \liminf_{n \to \infty} \mathcal{E}(M)_s^{\tau_n} = \liminf_{n \to \infty} \mathbb{E}^{\mathbb{P}} \Big[\mathcal{E}(M)_t^{\tau_n} \Big| \mathcal{F}_s \Big] \\ &\geq \mathbb{E}^{\mathbb{P}} \Big[\liminf_{n \to \infty} \mathcal{E}(M)_t^{\tau_n} \Big| \mathcal{F}_s \Big] = \mathbb{E}^{\mathbb{P}} [\mathcal{E}(M)_t | \mathcal{F}_s], \ \mathbb{P}\text{-a.s.} \end{split}$$

So $\mathcal{E}(M)$ is a (non-negative) supermartingale as required. We saw above that $\mathcal{E}(M)$ is bounded in $\mathbb{L}^1(\mathbb{R}, \mathcal{F}, \mathbb{P})$, so $\mathcal{E}(M)_t$ converges, \mathbb{P} -a.s., to an (integrable) limit $\mathcal{E}(M)_\infty$ as $t \to \infty$. Assume now that $\mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_\infty] = 1$. It will suffice to prove that for $t \ge 0$

$$\mathcal{E}(M)_t = \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}|\mathcal{F}_t], \mathbb{P}-a.s.$$

By Fatou's lemma, we see that $\mathcal{E}(M)_t \geq \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}|\mathcal{F}_t]$, \mathbb{P} -a.s. and hence

$$\mathbb{E}^{\mathbb{P}}\Big[\big|\mathcal{E}(M)_t - \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}|\mathcal{F}_t]\big|\Big] = \mathbb{E}^{\mathbb{P}}\big[\mathcal{E}(M)_t - \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}|\mathcal{F}_t]\big] = \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_t] - \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}] \le 1 - \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}] = 0,$$

which immediately implies the claim.

2) Since M is bounded by a deterministic constant, so is $\mathcal{E}(\eta M)$ and hence $\mathcal{E}(\eta M)$ is a martingale. The first claim is thus an immediate application of Doob's inequality. For the second inequality, let us write

$$\left(\mathrm{e}^{\eta M_t - [\eta M]_t/2}\right)^p = \mathrm{e}^{p\eta M_t - \rho[\eta M]_t/2} \mathrm{e}^{(\rho - p)[\eta M]_t/2}.$$

Applying Hölder's inequality with exponents $1/(1-\varepsilon)$ and $1/\varepsilon$ yields

$$\mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{\eta M_t - [\eta M]_t/2}\right)^p\right] \le \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{p\eta M_t - \rho[\eta M]_t/2}\right)^{1/(1-\epsilon)}\right]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{(\rho-p)[\eta M]_t/2}\right)^{1/\varepsilon}\right]^{\varepsilon}$$

If $\rho = p^2/(1-\varepsilon)$, we see that

$$\mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{p\eta M_t - \rho[\eta M]_t/2}\right)^{1/(1-\varepsilon)}\right] = \mathbb{E}^{\mathbb{P}}[\mathcal{E}(\eta' M)_t] = 1, \text{ with } \eta' := \eta p/(1-\varepsilon),$$

since $\mathcal{E}(\eta' M)$ is a martingale starting from 1. Combining the results in the two previous displays thence yields the claim.

3) Fix $\eta \in (0,1)$. In 2), we showed that for p > 1 and $\varepsilon \in (0,1)$,

$$\mathbb{E}^{\mathbb{P}}\bigg[\sup_{t\in[0,\infty)}\mathcal{E}(\eta M)_t^p\bigg] \le \bigg(\frac{p}{p-1}\bigg)^p \mathbb{E}^{\mathbb{P}}\bigg[\exp\bigg(\frac{p^2/(1-\varepsilon)-p}{\epsilon}\eta^2\frac{[M]_\infty}{2}\bigg)\bigg],$$

whenever M is bounded by a deterministic constant. To see that this also holds without the boundedness assumption, we may apply the above result to M^{τ_n} to see that

$$\begin{split} \mathbb{E}^{\mathbb{P}}\bigg[\sup_{t\in[0,\infty)}\left(\mathcal{E}(\eta M)_{t}^{\tau_{n}}\right)^{p}\bigg] &\leq \bigg(\frac{p}{p-1}\bigg)^{p}\mathbb{E}^{\mathbb{P}}\bigg[\exp\bigg(\frac{p^{2}/(1-\varepsilon)-p}{\varepsilon}\eta^{2}\frac{[M]_{\tau_{n}}}{2}\bigg)\bigg] \\ &\leq \bigg(\frac{p}{p-1}\bigg)^{p}\mathbb{E}^{\mathbb{P}}\bigg[\exp\bigg(\frac{p^{2}/(1-\varepsilon)-p}{\varepsilon}\eta^{2}\frac{[M]_{\infty}}{2}\bigg)\bigg], \end{split}$$

and letting $n \to \infty$ (using monotone convergence) yields the required generalisation.

We will now show that we can take p > 1 and $\varepsilon \in (0, 1)$ such that

$$\frac{p^2/(1-\varepsilon)-p}{\varepsilon}\eta^2 \le 1.$$

One way to see this is to write $p = 1 + \delta$ and Taylor expand to obtain

$$\frac{p^2/(1-\varepsilon)-p}{\varepsilon}\,\eta^2 = \frac{(1+2\delta+O(\delta^2))(1+\varepsilon+O(\varepsilon^2))-1-\delta}{\varepsilon}\eta^2 = (1+2\delta+O(\varepsilon)+O(\delta^2)/\varepsilon)\eta^2, \text{ as } \varepsilon \text{ and } \delta \text{ go to } 0.$$

Since $\eta^2 < 1$, the above inequality can therefore be satisfied by first choosing $\varepsilon > 0$ and then $\delta > 0$ sufficiently small. For these values of $p = 1 + \delta$ and $\varepsilon \in (0, 1)$, therefore

$$\mathbb{E}^{\mathbb{P}}\left[\sup_{t\in[0,\infty)}\mathcal{E}(\eta M)_{t}^{p}\right] \leq \left(p/(p-1)\right)^{p}\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{[M]_{\infty}/2}\right] < \infty.$$

In particular, $\mathcal{E}(\eta M)$ is a uniformly integrable martingale and $\mathbb{E}^{\mathbb{P}}[\mathcal{E}(\eta M)_t] = \mathbb{E}^{\mathbb{P}}[\mathcal{E}(\eta M)_0] = 1$ for all $t \in [0, \infty]$.

4) Firstly note that since $\mathbb{E}^{\mathbb{P}}[e^{[M]_{\infty}/2}] < \infty$, $\mathbb{E}^{\mathbb{P}}[[M]_{\infty}] < \infty$ and hence M is an $\mathbb{L}^{2}(\mathbb{R}, \mathcal{F}, \mathbb{P})$ -bounded martingale. Consider $\eta = 1 - \varepsilon$ and $\rho = 1/(1 - \varepsilon)$ for $\varepsilon \in (0, 1)$. Then using the same argument as in 2), we see that

$$\mathbb{E}^{\mathbb{P}}[\mathcal{E}(\eta M)_{\infty}] = \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{\eta M_{\infty} - [\eta M]_{\infty}/2}\right] \leq \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{\eta M_{\infty} - \rho[\eta M]_{\infty}/2}\right)^{1/(1-\varepsilon)}\right]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{(\rho-1)[\eta M]_{\infty}/2}\right)^{1/\varepsilon}\right]^{\varepsilon} \\ = \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{(1-\varepsilon)[M]_{\infty}/2}\right]^{\varepsilon} \leq \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{[M]_{\infty}/2}\right]^{\varepsilon}.$$

We conclude by noting that $\mathbb{E}^{\mathbb{P}}[\mathcal{E}(\eta M)_{\infty}] = 1$ as derived in part 3).

5) Finally, by taking $\epsilon \to 0$ in the inequality

$$1 \leq \mathbb{E}(E(M)_{\infty})^{1-\epsilon} \mathbb{E}\left(e^{\langle M \rangle_{\infty}/2}\right)^{\epsilon}$$

that was derived in (iv), we get $\mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}] \ge 1$. By the argument in (i) also $\mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}] \le 1$ and hence $\mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_{\infty}] = 1$. The result then follows from the second part of 1).

Exercise 3

Let B be a standard Brownian motion (in some filtration satisfying the usual conditions). Fix $t \ge 0$. The goal of this exercise is to compute the moment generating function of $\int_0^t B_s^2 ds$. To this end, fix $\kappa > 0$ and $t \ge 0$.

1) Show that the process D defined by

$$D_s^t := \exp\left(-\kappa \int_0^{s\wedge t} B_u \mathrm{d}B_u - \frac{\kappa^2}{2} \int_0^{s\wedge t} B_u^2 \mathrm{d}u\right), \ s \ge 0,$$

is a \mathbb{P} -uniformly integrable (\mathbb{F}, \mathbb{P})-martingale. Moreover, observe that $\int_0^s B_u dB_u = (B_s^2 - s)/2$, \mathbb{P} -a.s., for all $s \ge 0$.

2) Now we define a new probability measure \mathbb{Q} via $d\mathbb{Q}/d\mathbb{P} := D_{\infty}^{t}$. Prove that under the measure \mathbb{Q} , the process

$$W_s^t := B_s + \kappa \int_0^{s \wedge t} B_u \mathrm{d}u,$$

is a standard Brownian motion (in the given filtration). Deduce that under \mathbb{Q} , $B_t \sim N(0, (1 - e^{-2\kappa t})/(2\kappa))$. Use this to prove that

$$\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^2}{2}\int_0^t B_u^2\mathrm{d}u}\right] = \mathbb{E}^{\mathbb{Q}}\left[\mathrm{e}^{\frac{\kappa}{2}(B_t^2-t)}\right] = \frac{1}{\sqrt{\cosh(\kappa t)}}$$

3) Let \widetilde{B} be another standard Brownian motion, independent of B. Show that

$$\int_0^t \left(B_u^2 + \widetilde{B}_u^2 \right) \mathrm{d}u \stackrel{\text{law}}{=} \inf\{s \ge 0 \colon |B_s| = t\}.$$

Is it true that $\int_0^{\cdot} (B_u^2 + \widetilde{B}_u^2) du \stackrel{\text{law}}{=} \inf\{s \ge 0 \colon |B_s| = \cdot\}?$

1) Let us consider the local martingale $M = -\kappa \int_0^{\cdot \wedge t} B_s dB_s$ so that $D = \exp(M - [M]/2)$, \mathbb{P} -a.s. We first observe that second statement $\int_0^s B_r dB_r = (B_s^2 - s)/2$ for all $s \ge 0$, \mathbb{P} -a.s., is a consequence of Itô's formula. Moreover

$$0 \le D_s \le \exp\left(-\kappa \int_0^{s \wedge t} B_r \mathrm{d}B_r\right) = \exp\left(\kappa/2(s \wedge t - B_{s \wedge t}^2)\right) \le \mathrm{e}^{\kappa t/2},$$

for all $s \ge 0$. Therefore D is bounded by a deterministic constant and hence a uniformly integrable martingale.

2) By Girsanov's theorem W = B - [B, M] is a local martingale under \mathbb{Q} . Moreover, we have $[W]_s = s$ for all $s \ge 0$, \mathbb{P} -a.s. (under \mathbb{P} and \mathbb{Q}), so by Lévy's characterisation, W is a standard Brownian motion in the given filtration. Also

$$[B,M] = -\kappa \int_0^{\cdot \wedge t} B_s \mathrm{d}s, \ \mathbb{P}\text{-a.s.} \text{ (w.r.t. both } \mathbb{P} \text{ and } \mathbb{Q}\text{)}.$$

We are now working with respect to \mathbb{Q} . Let B' be the unique strong solution to the following SDE (again noting that W is a standard Brownian motion in the given filtration)

$$dB'_s = dW_s - \kappa B'_s ds, \ B'_0 = 0, \ \mathbb{P}$$
-a.s. for $t \ge 0$.

This is an Ornstein–Uhlenbeck process, so we know that $B'_t \sim N(0, (1 - e^{-2\kappa t})/(2\kappa))$. It thus suffices to prove that $B'_t = B_t$, \mathbb{P} -a.s.. To see this, observe that

$$B'_s - B_s = -\kappa \int_0^s (B'_r - B_r) \mathrm{d}r$$
, for all $s \le t$, \mathbb{P} -a.s..

By an application of Gronwall's lemma, we can deduce that B = B' as required. Using this, we can compute

$$\mathbb{E}^{\mathbb{Q}}\left[\mathrm{e}^{\frac{\kappa}{2}(B_t^2-t)}\right] = \int_{\mathbb{R}} \frac{\mathrm{e}^{-x^2/2}}{\sqrt{2\pi}} \exp\left(\frac{\kappa}{2}\left(\frac{1-\mathrm{e}^{-2\kappa t}}{2\kappa}x^2-t\right)\right) \mathrm{d}x$$
$$= \mathrm{e}^{-\kappa t/2} \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\frac{1+\mathrm{e}^{-2\kappa t}}{2}\right)$$
$$= \frac{\mathrm{e}^{-\kappa t/2}}{\sqrt{(1+\mathrm{e}^{-2\kappa t})/2}} = \frac{1}{\sqrt{\cosh(\kappa t)}},$$

as required. It only remains to express the expectation w.r.t. \mathbb{Q} on the left-hand side in terms of an expectation w.r.t. \mathbb{P} . Using the definition of \mathbb{Q} we get that

$$\mathbb{E}^{\mathbb{Q}}\left[e^{\frac{\kappa}{2}(B_t^2-t)}\right] = \mathbb{E}^{\mathbb{P}}\left[\exp\left(\frac{\kappa}{2}(B_t^2-t)-\kappa\int_0^t B_s \mathrm{d}B_s - \frac{\kappa^2}{2}\int_0^t B_s^2 \mathrm{d}s\right)\right]$$
$$= \mathbb{E}^{\mathbb{P}}\left[e^{-\frac{\kappa^2}{2}\int_0^t B_s^2 \mathrm{d}s}\right].$$

3) The moment generating function of $\inf\{s \ge 0 : |B_s| = t\}$ is known, and for $\kappa > 0$

$$\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^2}{2}\inf\{s\geq 0\colon |B_s|=t\}}\right] = \frac{1}{\cosh(\kappa t)} = \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^2}{2}\int_0^t B_s^2 \mathrm{d}s}\right] \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^2}{2}\int_0^t \tilde{B}_s^2 \mathrm{d}s}\right]$$
$$= \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^2}{2}\int_0^t (B_s^2 + \tilde{B}_s^2) \mathrm{d}s}\right].$$

If the moment generating functions of two non-negative random variables agree, they have the same law, so the assertion follows. Finally, it is not true that

$$\int_0^{\cdot} \left(B_s^2 + \tilde{B}_s^2 \right) \mathrm{d}s \stackrel{d}{=} \inf\{s \ge 0 \colon |B_s| = \cdot\},$$

since the process on the left-hand side is continuous while the process on the right-hand side has jump discontinuities a.s. (we may observe that it is increasing and is left-continuous however).

Exercise 4

Fix a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$. Let *B* be an (\mathbb{F}, \mathbb{P}) -Brownian motion, μ a bounded \mathbb{F} -adapted and measurable process, and fix some $x_0 \in \mathbb{R}$.

1) Show that there exists a unique solution to the SDE

$$X_t = x_0 + \int_0^t \mu_s \mathrm{d}s + \int_0^t X_s \mathrm{d}B_s, \ t \ge 0.$$

which is given by

$$X_t = \mathcal{E}(B)_t \left(x_0 + \int_0^t \mathcal{E}(B)_s^{-1} \mu_s \mathrm{d}s \right), \ t \ge 0.$$

In particular, if $x_0 \ge 0$ and μ is valued in \mathbb{R}_+ , show that X is also valued in \mathbb{R}_+ .

2) Fix now $(x_1, x_2) \in \mathbb{R}^2$, as well as two maps a_1 and a_2 from $\mathbb{R}_+ \times \mathbb{R}$ to \mathbb{R} which are Lipschitz continuous and with linear growth with respect to their second variable, uniformly in the first one. Assume that $a_1 \ge a_2$ and $x_1 \ge x_2$. Show that there are unique solutions to the SDEs

$$X_t^i = x_i + \int_0^t a_i(s, X_s^i) \mathrm{d}s + \int_0^t X_s^i \mathrm{d}B_s, \ t \ge 0, \ i \in \{1, 2\},$$

and that $X^1 \ge X^2$.

1) Once again, we have here an SDE with uniformly Lipschitz-continuous coefficients, so existence and uniqueness of a strong solution is immediate. Then it suffices to apply Itô's formula recalling that

$$\mathrm{d}\mathcal{E}(B)_t = \mathcal{E}(B_t)\mathrm{d}B_t,$$

to verify that the solution is given as in the statement. The non-negativity is then obvious.

2) This questions is about a technique called linearisation. First, the assumptions made ensure that X^1 and X^2 are well-defined as unique strong solutions to their respective SDEs. Then, the point is to notice that we can always write

$$a_1(s, X_s^1) - a_2(s, X_s^2) = a_1(s, X_s^1) - a_2(s, X_s^1) + \lambda_s(X_s^1 - X_s^2),$$

where

$$\lambda_s := \frac{a_2(s, X_s^1) - a_2(s, X_s^2)}{X_s^1 - X_s^2} \mathbf{1}_{\{X_s^1 \neq X_s^2\}},$$

is a bounded, measurable and \mathbb{F} -adapted process by the Lipschitz property of a_2 . Writing $\delta X := X^1 - X^2$, we get

$$\delta X_t = (x_1 - x_2) + \int_0^t \left(a_1(s, X_s^1) - a_2(s, X_s^1) + \lambda_s \delta X_s \right) \mathrm{d}s + \int_0^t \delta X_s \mathrm{d}B_s.$$

If we now write $Y_t := e^{-\int_0^t \lambda_s ds} \delta X_t$, we get

$$Y_t = (x_1 - x_2) + \int_0^t e^{-\int_0^s \lambda_u du} (a_1(s, X_s^1) - a_2(s, X_s^1)) ds + \int_0^t Y_s dB_s,$$

and it then suffices to apply 1) with $\mu_s := e^{-\int_0^s \lambda_u du} (a_1(s, X_s^1) - a_2(s, X_s^1))$ which is non-negative by assumption.