Assignment 11—solutions

Exercise 1

Let B be an (\mathbb{F}, \mathbb{P})-Brownian motion and M an (\mathbb{F}, \mathbb{P})-martingale such that $\mathrm{d} M_{t}=\sigma M_{t} \mathrm{~d} B_{t}$ with $\sigma>0$ given and $M_{0}=1$.

1) Give the Itô decomposition of $Y_{t}:=\left(M_{t}\right)^{-1}, t \geq 0$.
2) Let \mathbb{Q} be the probability measure defined by $d \mathbb{Q} / d \mathbb{P}:=M$. What can you say about the law of Y under \mathbb{Q} ?
3) Let $K \geq 0$ be given. Show that

$$
\mathbb{E}^{\mathbb{P}}\left[\left(M_{T}-K\right)^{+}\right]=K \mathbb{E}^{\mathbb{P}}\left[\left(\frac{1}{K}-M_{T}\right)^{+}\right]
$$

1) It suffices to apply Itô's formula, noticing also that $M_{t}=\mathcal{E}(\sigma B)_{t}$

$$
\mathrm{d} Y_{t}=-\frac{1}{M_{t}^{2}} \mathrm{~d} M_{t}+\frac{1}{M_{t}^{3}} \sigma^{2} M_{t}^{2} \mathrm{~d} t=-\sigma Y_{t} \mathrm{~d} B_{t}+\sigma^{2} Y_{t} \mathrm{~d} t
$$

2) First, Novikov's condition gives us immediately that M is a martingale, and we can use it as a change of measure, say at least on \mathcal{F}_{T}. Then by Girsanov's theorem (and the symmetry of Brownian motion)

$$
B_{t}^{\mathbb{Q}}:=-B_{t}+\sigma t
$$

is an (\mathbb{F}, \mathbb{Q})-Brownian motion, so that

$$
\mathrm{d} Y_{t}=\sigma Y_{t} \mathrm{~d} B_{t}^{\mathbb{Q}}
$$

and thus the law of Y under \mathbb{Q} is the same as the law of M under \mathbb{P}.
3) We have

$$
\mathbb{E}^{\mathbb{P}}\left[\left(M_{T}-K\right)^{+}\right]=K \mathbb{E}^{\mathbb{P}}\left[M_{T}\left(K^{-1}-Y_{T}\right)^{+}\right]=K \mathbb{E}^{\mathbb{Q}}\left[\left(K^{-1}-Y_{T}\right)^{+}\right]=K \mathbb{E}^{\mathbb{P}}\left[\left(K^{-1}-M_{T}\right)^{+}\right]
$$

Exercise 2

The goal of this question is to prove Novikov's condition which gives a sufficient requirement for an exponential (local) martingale to be a uniformly integrable martingale. Let $\mathbb{F}:=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be a filtration satisfying the usual conditions. When N is a continuous (\mathbb{F}, \mathbb{P})-local martingale we will write $\mathcal{E}(N):=\exp (N-[N] / 2)$. Suppose that M is a given continuous (\mathbb{F}, \mathbb{P})-local martingale with $M_{0}=0, \mathbb{P}$-a.s.
 uniformly integrable (\mathbb{F}, \mathbb{P})-martingale.
2) Consider $p \geq 1, \varepsilon \in(0,1), \eta \in(0,1)$ and $\rho \in \mathbb{R}$. Prove that when M is bounded by a deterministic constant, then for any $t \geq 0$

$$
\begin{aligned}
& \mathbb{E}^{\mathbb{P}}\left[\sup _{s \in[0, \infty)} \mathcal{E}(\eta M)_{s}^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \sup _{s \in[0, \infty)} \mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(\eta M)_{s}^{p}\right] \text {, for } p>1 \\
& \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{\eta M_{t}-[\eta M]_{t} / 2}\right)^{p}\right] \leq \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{(\rho-p)[\eta M]_{t} / 2}\right)^{1 / \varepsilon}\right]^{\varepsilon}, \text { for } \rho=p^{2} /(1-\varepsilon)
\end{aligned}
$$

3) Use 2) and a localisation argument to establish the following: If $\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{[M]_{\infty} / 2}\right]<+\infty$ (called Novikov's condition) then for all $\eta \in(0,1)$, there exists $p>1$ such that

$$
\mathbb{E}^{\mathbb{P}}\left[\sup _{t \in[0, \infty)} \mathcal{E}(\eta M)^{p}\right]<\infty, \text { and hence } \mathbb{E}^{\mathbb{P}}\left[\sup _{t \in[0, \infty)} \mathcal{E}(\eta M)\right]<+\infty
$$

Deduce that then $\mathcal{E}(\eta M)$ is a \mathbb{P}-uniformly integrable (\mathbb{F}, \mathbb{P})-martingale, so that $\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(\eta M)_{t}\right]=1$, for all $t \in[0, \infty]$.
4) Using 3) and part of the argument given in 2), show that (again assuming Novikov's condition) for $\varepsilon \in(0,1)$

$$
1=\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(\eta M)_{\infty}\right] \leq \mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty}\right]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{(1-\varepsilon)[M]_{\infty} / 2}\right]^{\varepsilon} \leq \mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty}\right]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{[M]_{\infty} / 2}\right]^{\varepsilon}, \text { where } \eta:=1-\varepsilon
$$

5) Combine the above results to deduce that under Novikov's condition, $\mathcal{E}(M)$ is a \mathbb{P}-uniformly integrable (\mathbb{F}, \mathbb{P})martingale.
6) First of all, we know that $\mathcal{E}(M)$ is a local martingale. Let us define stopping times $\tau_{n}=\inf \left\{t \geq 0:\left|M_{t}\right| \geq\right.$ $n\}$ for $n \in \mathbb{N}$. Then $\mathcal{E}(M)^{\tau_{n}}$ are local martingales that are each bounded by deterministic constant, so they are all martingales. By Fatou's lemma, we get that for $t \geq 0$,

$$
0 \leq \mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{t}\right]=\mathbb{E}^{\mathbb{P}}\left[\liminf _{n \rightarrow \infty} \mathcal{E}(M)_{t}^{\tau_{n}}\right] \leq \liminf _{n \rightarrow \infty} \mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{t}^{\tau_{n}}\right]=1
$$

This yields integrability. Clearly $\mathcal{E}(M)$ is adapted. Consider now $0 \leq s \leq t$. Then

$$
\begin{aligned}
\mathcal{E}(M)_{s} & =\liminf _{n \rightarrow \infty} \mathcal{E}(M)_{s}^{\tau_{n}}=\liminf _{n \rightarrow \infty} \mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{t}^{\tau_{n}} \mid \mathcal{F}_{s}\right] \\
& \geq \mathbb{E}^{\mathbb{P}}\left[\liminf _{n \rightarrow \infty} \mathcal{E}(M)_{t}^{\tau_{n}} \mid \mathcal{F}_{s}\right]=\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{t} \mid \mathcal{F}_{s}\right], \mathbb{P} \text {-a.s. }
\end{aligned}
$$

So $\mathcal{E}(M)$ is a (non-negative) supermartingale as required. We saw above that $\mathcal{E}(M)$ is bounded in $\mathbb{L}^{1}(\mathbb{R}, \mathcal{F}, \mathbb{P})$, so $\mathcal{E}(M)_{t}$ converges, $\mathbb{P}-$ a.s., to an (integrable) limit $\mathcal{E}(M)_{\infty}$ as $t \rightarrow \infty$. Assume now that $\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty}\right]=1$. It will suffice to prove that for $t \geq 0$

$$
\mathcal{E}(M)_{t}=\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty} \mid \mathcal{F}_{t}\right], \mathbb{P} \text {-a.s. }
$$

By Fatou's lemma, we see that $\mathcal{E}(M)_{t} \geq \mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty} \mid \mathcal{F}_{t}\right]$, $\mathbb{P}-$ a.s. and hence

$$
\mathbb{E}^{\mathbb{P}}\left[\left|\mathcal{E}(M)_{t}-\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty} \mid \mathcal{F}_{t}\right]\right|\right]=\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{t}-\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty} \mid \mathcal{F}_{t}\right]\right]=\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{t}\right]-\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty}\right] \leq 1-\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty}\right]=0
$$

which immediately implies the claim.
2) Since M is bounded by a deterministic constant, so is $\mathcal{E}(\eta M)$ and hence $\mathcal{E}(\eta M)$ is a martingale. The first claim is thus an immediate application of Doob's inequality. For the second inequality, let us write

$$
\left(\mathrm{e}^{\eta M_{t}-[\eta M]_{t} / 2}\right)^{p}=\mathrm{e}^{p \eta M_{t}-\rho[\eta M]_{t} / 2} \mathrm{e}^{(\rho-p)[\eta M]_{t} / 2}
$$

Applying Hölder's inequality with exponents $1 /(1-\varepsilon)$ and $1 / \varepsilon$ yields

$$
\mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{\eta M_{t}-[\eta M]_{t} / 2}\right)^{p}\right] \leq \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{p \eta M_{t}-\rho[\eta M]_{t} / 2}\right)^{1 /(1-\epsilon)}\right]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{(\rho-p)[\eta M]_{t} / 2}\right)^{1 / \varepsilon}\right]^{\varepsilon}
$$

If $\rho=p^{2} /(1-\varepsilon)$, we see that

$$
\mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{p \eta M_{t}-\rho[\eta M]_{t} / 2}\right)^{1 /(1-\varepsilon)}\right]=\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}\left(\eta^{\prime} M\right)_{t}\right]=1, \text { with } \eta^{\prime}:=\eta p /(1-\varepsilon)
$$

since $\mathcal{E}\left(\eta^{\prime} M\right)$ is a martingale starting from 1. Combining the results in the two previous displays thence yields the claim.
3) Fix $\eta \in(0,1)$. In 2$)$, we showed that for $p>1$ and $\varepsilon \in(0,1)$,

$$
\mathbb{E}^{\mathbb{P}}\left[\sup _{t \in[0, \infty)} \mathcal{E}(\eta M)_{t}^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \mathbb{E}^{\mathbb{P}}\left[\exp \left(\frac{p^{2} /(1-\varepsilon)-p}{\epsilon} \eta^{2} \frac{[M]_{\infty}}{2}\right)\right]
$$

whenever M is bounded by a deterministic constant. To see that this also holds without the boundedness assumption, we may apply the above result to $M^{\tau_{n}}$ to see that

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[\sup _{t \in[0, \infty)}\left(\mathcal{E}(\eta M)_{t}^{\tau_{n}}\right)^{p}\right] & \leq\left(\frac{p}{p-1}\right)^{p} \mathbb{E}^{\mathbb{P}}\left[\exp \left(\frac{p^{2} /(1-\varepsilon)-p}{\varepsilon} \eta^{2} \frac{[M]_{\tau_{n}}}{2}\right)\right] \\
& \leq\left(\frac{p}{p-1}\right)^{p} \mathbb{E}^{\mathbb{P}}\left[\exp \left(\frac{p^{2} /(1-\varepsilon)-p}{\varepsilon} \eta^{2} \frac{[M]_{\infty}}{2}\right)\right],
\end{aligned}
$$

and letting $n \rightarrow \infty$ (using monotone convergence) yields the required generalisation.
We will now show that we can take $p>1$ and $\varepsilon \in(0,1)$ such that

$$
\frac{p^{2} /(1-\varepsilon)-p}{\varepsilon} \eta^{2} \leq 1
$$

One way to see this is to write $p=1+\delta$ and Taylor expand to obtain

$$
\frac{p^{2} /(1-\varepsilon)-p}{\varepsilon} \eta^{2}=\frac{\left(1+2 \delta+O\left(\delta^{2}\right)\right)\left(1+\varepsilon+O\left(\varepsilon^{2}\right)\right)-1-\delta}{\varepsilon} \eta^{2}=\left(1+2 \delta+O(\varepsilon)+O\left(\delta^{2}\right) / \varepsilon\right) \eta^{2}, \text { as } \varepsilon \text { and } \delta \text { go to } 0
$$

Since $\eta^{2}<1$, the above inequality can therefore be satisfied by first choosing $\varepsilon>0$ and then $\delta>0$ sufficiently small. For these values of $p=1+\delta$ and $\varepsilon \in(0,1)$, therefore

$$
\mathbb{E}^{\mathbb{P}}\left[\sup _{t \in[0, \infty)} \mathcal{E}(\eta M)_{t}^{p}\right] \leq(p /(p-1))^{p} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{[M]_{\infty} / 2}\right]<\infty
$$

In particular, $\mathcal{E}(\eta M)$ is a uniformly integrable martingale and $\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(\eta M)_{t}\right]=\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(\eta M)_{0}\right]=1$ for all $t \in[0, \infty]$.
4) Firstly note that since $\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{[M]_{\infty} / 2}\right]<\infty, \mathbb{E}^{\mathbb{P}}\left[[M]_{\infty}\right]<\infty$ and hence M is an $\mathbb{L}^{2}(\mathbb{R}, \mathcal{F}, \mathbb{P})$-bounded martingale. Consider $\eta=1-\varepsilon$ and $\rho=1 /(1-\varepsilon)$ for $\varepsilon \in(0,1)$. Then using the same argument as in 2), we see that

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(\eta M)_{\infty}\right]=\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{\eta M_{\infty}-[\eta M]_{\infty} / 2}\right] & \leq \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{\eta M_{\infty}-\rho[\eta M]_{\infty} / 2}\right)^{1 /(1-\varepsilon)}\right]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[\left(\mathrm{e}^{(\rho-1)[\eta M]_{\infty} / 2}\right)^{1 / \varepsilon}\right]^{\varepsilon} \\
& =\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty}\right]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{(1-\varepsilon)[M]_{\infty} / 2}\right]^{\varepsilon} \leq \mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty}\right]^{1-\varepsilon} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{[M]_{\infty} / 2}\right]^{\varepsilon}
\end{aligned}
$$

We conclude by noting that $\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(\eta M)_{\infty}\right]=1$ as derived in part 3).
5) Finally, by taking $\epsilon \rightarrow 0$ in the inequality

$$
1 \leq \mathbb{E}\left(E(M)_{\infty}\right)^{1-\epsilon} \mathbb{E}\left(e^{\langle M\rangle_{\infty} / 2}\right)^{\epsilon}
$$

that was derived in (iv), we get $\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty}\right] \geq 1$. By the argument in (i) also $\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty}\right] \leq 1$ and hence $\mathbb{E}^{\mathbb{P}}\left[\mathcal{E}(M)_{\infty}\right]=1$. The result then follows from the second part of 1).

Exercise 3

Let B be a standard Brownian motion (in some filtration satisfying the usual conditions). Fix $t \geq 0$. The goal of this exercise is to compute the moment generating function of $\int_{0}^{t} B_{s}^{2} \mathrm{~d} s$. To this end, fix $\kappa>0$ and $t \geq 0$.

1) Show that the process D defined by

$$
D_{s}^{t}:=\exp \left(-\kappa \int_{0}^{s \wedge t} B_{u} \mathrm{~d} B_{u}-\frac{\kappa^{2}}{2} \int_{0}^{s \wedge t} B_{u}^{2} \mathrm{~d} u\right), s \geq 0
$$

is a \mathbb{P}-uniformly integrable (\mathbb{F}, \mathbb{P})-martingale. Moreover, observe that $\int_{0}^{s} B_{u} \mathrm{~d} B_{u}=\left(B_{s}^{2}-s\right) / 2$, \mathbb{P}-a.s., for all $s \geq 0$.
2) Now we define a new probability measure \mathbb{Q} via $d \mathbb{Q} / d \mathbb{P}:=D_{\infty}^{t}$. Prove that under the measure \mathbb{Q}, the process

$$
W_{s}^{t}:=B_{s}+\kappa \int_{0}^{s \wedge t} B_{u} \mathrm{~d} u
$$

is a standard Brownian motion (in the given filtration). Deduce that under $\mathbb{Q}, B_{t} \sim N\left(0,\left(1-\mathrm{e}^{-2 \kappa t}\right) /(2 \kappa)\right)$. Use this to prove that

$$
\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^{2}}{2} \int_{0}^{t} B_{u}^{2} \mathrm{~d} u}\right]=\mathbb{E}^{\mathbb{Q}}\left[\mathrm{e}^{\frac{\kappa}{2}\left(B_{t}^{2}-t\right)}\right]=\frac{1}{\sqrt{\cosh (\kappa t)}}
$$

3) Let \widetilde{B} be another standard Brownian motion, independent of B. Show that

$$
\int_{0}^{t}\left(B_{u}^{2}+\widetilde{B}_{u}^{2}\right) \mathrm{d} u \stackrel{\text { law }}{=} \inf \left\{s \geq 0:\left|B_{s}\right|=t\right\}
$$

Is it true that $\int_{0}^{\cdot}\left(B_{u}^{2}+\widetilde{B}_{u}^{2}\right) \mathrm{d} u \stackrel{\text { law }}{=} \inf \left\{s \geq 0:\left|B_{s}\right|=\cdot\right\} ?$

1) Let us consider the local martingale $M=-\kappa \int_{0}^{\cdot \wedge t} B_{s} \mathrm{~d} B_{s}$ so that $D=\exp (M-[M] / 2)$, \mathbb{P}-a.s. We first observe that second statement $\int_{0}^{s} B_{r} \mathrm{~d} B_{r}=\left(B_{s}^{2}-s\right) / 2$ for all $s \geq 0, \mathbb{P}-$ a.s., is a consequence of Itô's formula. Moreover

$$
0 \leq D_{s} \leq \exp \left(-\kappa \int_{0}^{s \wedge t} B_{r} \mathrm{~d} B_{r}\right)=\exp \left(\kappa / 2\left(s \wedge t-B_{s \wedge t}^{2}\right)\right) \leq \mathrm{e}^{\kappa t / 2}
$$

for all $s \geq 0$. Therefore D is bounded by a deterministic constant and hence a uniformly integrable martingale.
2) By Girsanov's theorem $W=B-[B, M]$ is a local martingale under \mathbb{Q}. Moreover, we have $[W]_{s}=s$ for all $s \geq 0, \mathbb{P}$-a.s. (under \mathbb{P} and \mathbb{Q}), so by Lévy's characterisation, W is a standard Brownian motion in the given filtration. Also

$$
[B, M]=-\kappa \int_{0}^{\cdot \wedge t} B_{s} \mathrm{~d} s, \mathbb{P}-\text { a.s. (w.r.t. both } \mathbb{P} \text { and } \mathbb{Q} \text {). }
$$

We are now working with respect to \mathbb{Q}. Let B^{\prime} be the unique strong solution to the following SDE (again noting that W is a standard Brownian motion in the given filtration)

$$
\mathrm{d} B_{s}^{\prime}=\mathrm{d} W_{s}-\kappa B_{s}^{\prime} \mathrm{ds}, B_{0}^{\prime}=0, \mathbb{P}-\text { a.s. for } t \geq 0
$$

This is an Ornstein-Uhlenbeck process, so we know that $B_{t}^{\prime} \sim N\left(0,\left(1-\mathrm{e}^{-2 \kappa t}\right) /(2 \kappa)\right)$. It thus suffices to prove that $B_{t}^{\prime}=B_{t}, \mathbb{P}$-a.s.. To see this, observe that

$$
B_{s}^{\prime}-B_{s}=-\kappa \int_{0}^{s}\left(B_{r}^{\prime}-B_{r}\right) \mathrm{d} r, \text { for all } s \leq t, \mathbb{P}-\text { a.s.. }
$$

By an application of Gronwall's lemma, we can deduce that $B=B^{\prime}$ as required. Using this, we can compute

$$
\begin{aligned}
\mathbb{E}^{\mathbb{Q}}\left[\mathrm{e}^{\frac{\kappa}{2}\left(B_{t}^{2}-t\right)}\right] & =\int_{\mathbb{R}} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \exp \left(\frac{\kappa}{2}\left(\frac{1-\mathrm{e}^{-2 \kappa t}}{2 \kappa} x^{2}-t\right)\right) \mathrm{d} x \\
& =\mathrm{e}^{-\kappa t / 2} \int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2} \frac{1+\mathrm{e}^{-2 \kappa t}}{2}\right) \\
& =\frac{\mathrm{e}^{-\kappa t / 2}}{\sqrt{\left(1+\mathrm{e}^{-2 \kappa t}\right) / 2}}=\frac{1}{\sqrt{\cosh (\kappa t)}},
\end{aligned}
$$

as required. It only remains to express the expectation w.r.t. \mathbb{Q} on the left-hand side in terms of an expectation w.r.t. \mathbb{P}. Using the definition of \mathbb{Q} we get that

$$
\begin{aligned}
\mathbb{E}^{\mathbb{Q}}\left[\mathrm{e}^{\frac{\kappa}{2}\left(B_{t}^{2}-t\right)}\right] & =\mathbb{E}^{\mathbb{P}}\left[\exp \left(\frac{\kappa}{2}\left(B_{t}^{2}-t\right)-\kappa \int_{0}^{t} B_{s} \mathrm{~d} B_{s}-\frac{\kappa^{2}}{2} \int_{0}^{t} B_{s}^{2} \mathrm{~d} s\right)\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^{2}}{2} \int_{0}^{t} B_{s}^{2} \mathrm{~d} s}\right]
\end{aligned}
$$

3) The moment generating function of $\inf \left\{s \geq 0:\left|B_{s}\right|=t\right\}$ is known, and for $\kappa>0$

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^{2}}{2} \inf \left\{s \geq 0:\left|B_{s}\right|=t\right\}}\right] & =\frac{1}{\cosh (\kappa t)}=\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^{2}}{2} \int_{0}^{t} B_{s}^{2} \mathrm{~d} s}\right] \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^{2}}{2} \int_{0}^{t} \tilde{B}_{s}^{2} \mathrm{~d} s}\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\frac{\kappa^{2}}{2} \int_{0}^{t}\left(B_{s}^{2}+\tilde{B}_{s}^{2}\right) \mathrm{d} s}\right] .
\end{aligned}
$$

If the moment generating functions of two non-negative random variables agree, they have the same law, so the assertion follows. Finally, it is not true that

$$
\int_{0}\left(B_{s}^{2}+\tilde{B}_{s}^{2}\right) \mathrm{d} s \stackrel{d}{=} \inf \left\{s \geq 0:\left|B_{s}\right|=\cdot\right\}
$$

since the process on the left-hand side is continuous while the process on the right-hand side has jump discontinuities a.s. (we may observe that it is increasing and is left-continuous however).

Exercise 4

Fix a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$. Let B be an (\mathbb{F}, \mathbb{P})-Brownian motion, μ a bounded \mathbb{F}-adapted and measurable process, and fix some $x_{0} \in \mathbb{R}$.

1) Show that there exists a unique solution to the SDE

$$
X_{t}=x_{0}+\int_{0}^{t} \mu_{s} \mathrm{~d} s+\int_{0}^{t} X_{s} \mathrm{~d} B_{s}, t \geq 0
$$

which is given by

$$
X_{t}=\mathcal{E}(B)_{t}\left(x_{0}+\int_{0}^{t} \mathcal{E}(B)_{s}^{-1} \mu_{s} \mathrm{~d} s\right), t \geq 0
$$

In particular, if $x_{0} \geq 0$ and μ is valued in \mathbb{R}_{+}, show that X is also valued in \mathbb{R}_{+}.
2) Fix now $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, as well as two maps a_{1} and a_{2} from $\mathbb{R}_{+} \times \mathbb{R}$ to \mathbb{R} which are Lipschitz continuous and with linear growth with respect to their second variable, uniformly in the first one. Assume that $a_{1} \geq a_{2}$ and $x_{1} \geq x_{2}$. Show that there are unique solutions to the SDEs

$$
X_{t}^{i}=x_{i}+\int_{0}^{t} a_{i}\left(s, X_{s}^{i}\right) \mathrm{d} s+\int_{0}^{t} X_{s}^{i} \mathrm{~d} B_{s}, t \geq 0, i \in\{1,2\}
$$

and that $X^{1} \geq X^{2}$.

1) Once again, we have here an SDE with uniformly Lipschitz-continuous coefficients, so existence and uniqueness of a strong solution is immediate. Then it suffices to apply Itô's formula recalling that

$$
\mathrm{d} \mathcal{E}(B)_{t}=\mathcal{E}\left(B_{t}\right) \mathrm{d} B_{t}
$$

to verify that the solution is given as in the statement. The non-negativity is then obvious.
2) This questions is about a technique called linearisation. First, the assumptions made ensure that X^{1} and X^{2} are well-defined as unique strong solutions to their respective SDEs. Then, the point is to notice that we can always write

$$
a_{1}\left(s, X_{s}^{1}\right)-a_{2}\left(s, X_{s}^{2}\right)=a_{1}\left(s, X_{s}^{1}\right)-a_{2}\left(s, X_{s}^{1}\right)+\lambda_{s}\left(X_{s}^{1}-X_{s}^{2}\right)
$$

where

$$
\lambda_{s}:=\frac{a_{2}\left(s, X_{s}^{1}\right)-a_{2}\left(s, X_{s}^{2}\right)}{X_{s}^{1}-X_{s}^{2}} 1_{\left\{X_{s}^{1} \neq X_{s}^{2}\right\}}
$$

is a bounded, measurable and \mathbb{F}-adapted process by the Lipschitz property of a_{2}. Writing $\delta X:=X^{1}-X^{2}$, we get

$$
\delta X_{t}=\left(x_{1}-x_{2}\right)+\int_{0}^{t}\left(a_{1}\left(s, X_{s}^{1}\right)-a_{2}\left(s, X_{s}^{1}\right)+\lambda_{s} \delta X_{s}\right) \mathrm{d} s+\int_{0}^{t} \delta X_{s} \mathrm{~d} B_{s}
$$

If we now write $Y_{t}:=\mathrm{e}^{-\int_{0}^{t} \lambda_{s} \mathrm{~d} s} \delta X_{t}$, we get

$$
Y_{t}=\left(x_{1}-x_{2}\right)+\int_{0}^{t} \mathrm{e}^{-\int_{0}^{s} \lambda_{u} \mathrm{~d} u}\left(a_{1}\left(s, X_{s}^{1}\right)-a_{2}\left(s, X_{s}^{1}\right)\right) \mathrm{d} s+\int_{0}^{t} Y_{s} \mathrm{~d} B_{s}
$$

and it then suffices to apply 1) with $\mu_{s}:=\mathrm{e}^{-\int_{0}^{s} \lambda_{u} \mathrm{~d} u}\left(a_{1}\left(s, X_{s}^{1}\right)-a_{2}\left(s, X_{s}^{1}\right)\right)$ which is non-negative by assumption.

